## SCALES

Scale of map: is the fixed relation that every distance on the map to the corresponding distance on the ground.
"» Scale $=$ distance on the map/the corresponding distance on the ground.
")>>Scale $=\sqrt{\frac{\text { aera on the map }}{\text { area on the ground }}}$

## Type of scale:

1. Numerical scale: one unit of length on the drawing represents a stated number of the same units of length on the ground as $1 / 5000$.
2. Second type is called the engineer's scale, as $1 \mathrm{~cm}: 20 \mathrm{~m}$.
3. A graphical scale: is a line subdivided into map distances corresponding to convenient units of length on the ground.

The Kinds of graphical scale:
a. Linear scale.

b. Diagonal scale.

"» No. of divisions = direct reading/ required accuracy.

A graphical scale is the most accurate, because; the Numerical scale is subject to error if the drawing paper shrinks or swells.

## The scale of map depends upon:

1. The purpose for which the map is required.
2. Drawing paper dimensions.
3. Accuracy required.

Example:
The plan of a field of an area of 17.436 hectares covers $27900 \mathrm{~mm}^{2}$ on paper. What is the scale?

Sol :-
1 hectare $=10000 \mathrm{~m}^{2}$
$17.436 * 10000=174360 \mathrm{~m} 2$
$1 \mathrm{~m}=1000 \mathrm{~mm}$
$1 \mathrm{~m}^{2}=1000000 \mathrm{~mm}^{2}$
$\frac{27900}{1000000}=0.0279 \mathrm{~m}^{2}$
Scale $=\sqrt{\frac{0,0279}{174360}}=\frac{1}{2500}$

## Example:

On a plan of scale 1 in 600 , the distance between two points was measured and found to be 428 m .It was after wards found that scale used was one of 1 in 500 what was the true length?

Sol :
$1 \mathrm{~cm}: 500 \mathrm{~cm}: 5 \mathrm{~m}$
$\frac{1}{!}=\frac{x}{428} ; \mathrm{x}=85.6 \mathrm{~cm}$
1 cm : $600 \mathrm{~cm}: 6 \mathrm{~m}$
$\frac{1 \mathrm{~cm}}{6 \mathrm{~m}}=\frac{85.6 \mathrm{~cm}}{x} ; \mathrm{x}=513.6 \mathrm{~m}$
Example : -
An area Of rectangular shape land is ( $1100 \mathrm{M} * 1600 \mathrm{M}$.). It is required to draw it on sheet of $(50 \mathrm{~cm} . * 70 \mathrm{~cm}$. $)$. What is the suitable scale?

$$
s 0 l:-
$$

Scale $=\sqrt{\frac{\text { aera on the map }}{\text { area on the ground }}}$
$=\sqrt{\frac{50 * 70}{1100 * 1600}=} \frac{1}{2242.44} \quad \gg \frac{1}{2500}$

## Example:-

A line " AB " is appear on a map of unknown scale, it's length is $(6.5 \mathrm{~cm}$ ), if the ground coordinate of $A$ and $B$ are $(500 \mathrm{~m}, 500 \mathrm{~m}) \&(700 \mathrm{~m}, 243.8 \mathrm{~m})$ respectively. Calculate that unknown scale.
Solution:
The length of $\mathrm{AB}=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
$\mathrm{AB}=\sqrt{(700-500)^{2}+(243.8-500)^{2}}=325.02 \mathrm{~m}$.
Scale $=6.5 \mathrm{~cm} / 325.02 \mathrm{~m}=1 / 5000$.

EX/ Draw graphical scale 1:1000 reads to 2 m and show on it distance (54 m)


EX/ Draw graphical scale 1:2000 reads to 1 m and show on it distances ( $87 \mathrm{~m}, 154 \mathrm{~m}$ )


