Obstacles in chaining

Obstacles to chaining prevent chainman from measuring directly between two points and give rise to a set of problems in which distances are found by indirect measurements. Obstacles to chaining are of three kinds:

1. Obstacles to ranging.
2. Obstacles to chaining.
3. Obstacles to both chaining and ranging.

1. Obstacles to ranging but not chaining:

This type of obstacle, in which the ends are not visible, is quite common except in flat country. There may be two cases of this obstacle:
i. Both ends of line may be visible from intermediate points on the line.
ii. Both ends of the line may not be visible from intermediate points on the line.

Case (i): method of reciprocal ranging as shown in page 11 may be used.
Case (ii): in figure below, let AB is the line in which A and B are not visible from intermediate point on it. Through A, draw a random line $A B_{1}$ in any convenient direction but as nearly towards B as possible. The point B_{1} should be so chosen that (i) $B i$ is visible from B and (ii) BB_{1} is perpendicular to the random line.

Measure BB_{1}. Select points C_{1} and D_{1} on the random line and erect perpendicular $\mathrm{C}_{1} \mathrm{C}$ and $\mathrm{D}_{1} \mathrm{D}$ on it.
Make $\mathrm{CC}_{1}=\frac{\mathrm{AC}_{1}}{A B_{1}} * \mathrm{BB}_{1}$ and $\mathrm{DD1}=\frac{\mathrm{AD}_{1}}{A B_{1}} * \mathrm{BB}_{1}$ join CD and prolong.

2-

Obstacles to chaining but not ranging:

There may be two cases of this obstacle:
i. When it is possible to chain round the obstacle ,i.e. a pound, hedge etc.
ii. When it is not possible to chain round the obstacle, e.g. a river.

Case (i): following are the chief method, as in figure below.

(a)

(b)

(c)

(d)

(e)

1. Method (a): select two points A and B on either side. Set out equal perpendiculars AC and BD . measure CD ; then $\mathrm{CD}=\mathrm{AB}$. [fig. (a)].
2. Method (b): set out AC perpendicular to the chain line. Measure AC and BC. [fig. (b)]. the length AB is calculated from the relation:

$$
A B=\overline{B C^{2}-A C^{2}} \cdot \sqrt{ }
$$

3. Method (c): by optical square or cross staff. Find a point C which subtends 90° with A and B . measure AC and BC . [Fig. (c)]. the length AB is calculated from the relation:
$A B=\sqrt{B C^{2}+A C^{2}}$.
4. Method (d): select two points C and D to both sides of A and in the same line. Measure $\mathrm{AC}, \mathrm{AD}, \mathrm{BC}$, and BD . [fig. (d)]. let angle BCD be equal to β.

From $\triangle \mathrm{BCD}$,

$$
\begin{align*}
B D^{2} & =B C^{2}+C D^{2}-2 B C \times C D \cos \theta \\
\cos \theta & =\frac{B C^{2}+C D^{2}-B D^{2}}{2 B C \times C D} \tag{i}
\end{align*}
$$

Similarly from \triangle BCA
$\cos \theta=\frac{B C^{2}+A C^{2}-A B^{2}}{2 B C \times A C}$
Equation (i) and (ii) and solving for AB , we get
"» $A B=\sqrt{\frac{\left(B C^{2} \times A D\right)+\left(B D^{2} \times A C\right)}{C D}-(A C \times A D)}$
5. Method (e): select any point E and range C in line with AE . Making $\mathrm{AE}=\mathrm{EC}$.

Range D in line with $B E$ and make $B E=E D$. measure $C D$; then $A B=C D$. [fig. (e)].

Case (ii): as shown in figure below,

(a)

(b)
6. Method (a): select point B on one side and A and C on the other side. Erect $A D$ and $C E$ as perpendiculars to $A B$ and range $B . D$ and E in one line. Measure AC, AD and CE. [Fig. (a)], if a line DF is drawn parallel to AB , cutting CE in F perpendicularly, then triangles ABD and FDE will be similar.
$\therefore \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{DF}}{\mathrm{FE}}$
But $\mathrm{FE}=\mathrm{CE}-\mathrm{CF}=\mathrm{CE}-\mathrm{AD}$, and $\mathrm{DF}=\mathrm{AC}$.
$\therefore \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{CE}-\mathrm{AD}}$
From which $A B=\frac{A C \times A D}{C E-A D}$.
7. Method (b): [fig. (b)]. erect a perpendicular AC and bisect it at D. erect perpendicular $C E$ at C and range E in line with $B D$. measure $C E$ then $A B=C E$.

3. Obstacles to both chaining and ranging:

A building is the typical example of this type of obstacle. The problem lies in prolonging the line beyond the obstacle and determining the distance across it. The method is: as shown in figure below, choose two points A and B to one side at erect perpendiculars AC and BD of equal length.

Join CD prolong it past the obstacle. Choose two points E and F on and erect perpendiculars EG and FH equal to that of AC (or BD). Join GH and prolong it. Measure DE. Evidently, $\mathrm{BG}=\mathrm{DE}$ as figure below.

Example

Compute the length of the perpendicular dropped from point C to the chain Line AB . Using field data as in figure below.

Answer:

$$
\begin{aligned}
& \mathrm{CD}^{2}=\mathrm{AC}^{2}-\mathrm{AD}^{2} \\
& \mathrm{CD}^{2}=\mathrm{BC}^{2}-\mathrm{BD}^{2} \\
& \mathrm{AC}^{2}-\mathrm{AD}^{2}=\mathrm{BC}^{2}-\mathrm{BD}^{2} \\
& \mathrm{AC}^{2}-\mathrm{BC}^{2}=\mathrm{AD}^{2}-\mathrm{BD}^{2} \\
& \mathrm{M}^{2}-\mathrm{N}^{2}=\mathrm{X}^{2}-\mathrm{Y}^{2} \\
& (\mathrm{M}-\mathrm{N})(\mathrm{M}+\mathrm{N})=(\mathrm{X}-\mathrm{Y})(\mathrm{X}+\mathrm{Y}) \\
& \mathrm{X}-\mathrm{Y}=(\mathrm{M}-\mathrm{N})(\mathrm{M}+\mathrm{N}) /(\mathrm{X}+\mathrm{Y})
\end{aligned}
$$

$$
\therefore \mathrm{X}-\mathrm{Y}=\frac{(\mathrm{M}-\mathrm{N})(\mathrm{M}+\mathrm{N})}{\mathrm{L}}=\Delta
$$

$$
+\mathrm{X}+\mathrm{Y}=\mathrm{L}
$$

$$
\overline{\mathrm{X}} \pm \mathrm{Y}=\mp \Delta
$$

$$
2 \mathrm{Y}=\mathrm{L}-\Delta
$$

$$
\therefore \mathrm{Y}=\frac{\mathrm{L}-\Delta}{2}
$$

$2 \mathrm{X}=\mathrm{L}+\Delta$

$$
\therefore \mathrm{X}=\frac{\mathrm{L}+\Delta}{2}
$$

