First class

General chemistry

First lecture

Article teacher

M.s.c Roaa wahhab

Chemistry is the science that studies matter and the changes that occur to it, specifically by studying its properties, structure, composition, behavior, interactions and what happens through it. Chemistry studies atoms and the bonds that occur between them to form molecules, and how these molecules are subsequently linked to form matter. It also studies the interactions that occur between them

branches of chemistry

physical chemistry, organic chemistry, inorganic chemistry, biochemistry,analytical chemistry

Analytical chemistry:
Which uses quantitave and qualitative analysis to identify and measur the physical and chemical properties of substance .

Organic chemistry

It studies compounds that contain carbon in its composition.

Bio chemistry

is abranch of natural science specialized in studying the chemical composition of cell parts in various simple and complex organisms.

Atom

atoms are the basic units of matter and It's the smallest unit of substance

Each atom consists of three basic components

1 -the protons have apositive

 electric charge
2 -the Electrons have a

 negative electric charge 3 - the Neutrons have no electric charge

- All atoms are electrically
neutral, because every atom has

an equal number of electrons and protons.

- Nearly all of the atom's mass is located in the nucleus.

The nucleus is tiny compared with the total size of the atom.

atomic number $=$ of protons atomic mass $=($ of protons) + (of neutrons)

Nucleus:

Small dense center of atom and contains almost the mass of the
atom and contains protons and neutrons.

Electrons

It is subatomic particle that is
almost spherical in shape of an
atom and carries a negative
electric charge.

- If the number of protons It is a and electrones are equal , electrically neutral.
- If the atom has mor protons than electrones it will has a positive charge.
-While if the electrons number mor than protons the atom has a negative charge

Neutral Atom

Atoms can attach to another one or mor by chemical bound to form chemical compounds such as molecules

Elements

Composed of one type of atoms . My be define as , apure substance that cannot be changed into a simple form of matter by any chemical reaction

Each element is identifide by two numbers:

Atomic number

Atomic weight (mass number)

Protons + Neutrons $=$ Atomic Mass Number

Number of Protons $=$ Atomic Number

What are the isotop?

The atoms that have the same number of protons and diffferent number of neutrones (atoms with same atomic number and different atomic weight)

Isotopes of Hydrogen

Isomers : are molecules that have

 the same molecular formula, but have a different arrangement of the atoms in space.

Radioactivity : is the property of emitting radiation from the nucleus of an atom.

β

2- Beta particles high speed electrons and negatively charged
3- gamma r high - energy from electromagnetic radiation and have no charge

First class

General chemistry

Second lecture

Article teacher

CHEMICAL BONDS:

is a lasting attraction between atoms, ions or molecules that enables the formation of chemical
compounds. The bond may result from the electrostatic
force of attraction between oppositely charged ions as
in ionic bonds or through the sharing of electrons as in
covalent bonds. The strength of chemical bonds varies
considerably; there are "strong bonds" or "primary
bonds" such as covalent, ionic and metallic bonds, and
"weak bonds" or "secondary bonds" such as dipole-
dipole interactions, the van der Waals forces and hydrogen bonding.

1=Ionic bond :

type of linkage formed from the electrostatic attraction between oppositely charged ions in a chemical compound. Such a bond forms when the valence electrons of one atom are transferred permanently to another atom. The atom that loses the electrons becomes a positively charged ion (cation), while the one that gains them becomes a negatively charged ion (anion).

2 $=$ Covalent bond:

the interatomic linkage that results from the sharing of one electron or pair between two atoms. The binding arises from the electrostatic attraction of their nuclei for the same electrons. A covalent bond forms when the bonded atoms have a lower total energy than that of widely separated atoms.

3= coordinate covalent bond

(Dipolar bond):

is a kind of covalent bond in which the two electrons derive from the same atom.

4- hydrogen bond:

Hydrogen bonding is a special type of dipole-dipole attraction between molecules, not a covalent bond to a hydrogen atom. It results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom and another very electronegative atom.

METHODS OF ANALYSIS;

Analytical chemistry studies and uses instruments and methods used to separate, identify, and quantify matter.
= QUAHTATIXE ANR QUANTITATIXE

ANALYSIS:

- Qualtitative analysis:

Qualitative analysis determines the presence or absence of a particular compound, but not the mass or concentration. By definition, qualitative analyses do not measure quantity.

- Quantitative analysis:

Quantitative analysis is the measurement of the quantities of particular chemical constituents present in a substance. Quantities can be measured by mass (gravimetric analysis) or volume (volumetric analysis). - statistical methods of quantitative analysis: Modern analytical chemistry is concerned with the detection, identification, and measurement of the chemical composition of unknown substances using existing instrumental techniques, and the development or application of new techniques and instruments. It is a quantitative science, meaning that the desired result is almost always numeric.

- Accuracy \& Precision:

Two terms of importance in any measurement are accuracy and precision, and it is important to distinguish between them since these terms have highly specific meanings when applied to scientific measurement.

1- Accupacy

Accuracy is defined as the closeness of a result to the true value. This can be applied to a single measurement, but is more commonly applied to the mean value of several repeated measurements, or replicates.

2- Precision :

Precision is defined as the extent to which results agree with one another and is usually evaluated in terms of the range or spread of results this means that precision is inherently related to the standard deviation of the repeated measurements.

errors in quantitative analysis:

the primary aim of such discussion in analytical chemistry is to determine (a) how close a result is to the 'true' value (the accuracy) and (b) how well replicate values agree with one another (the precision) .

First class

General chemistry

The third lecture

Article teacher
M.s.c Roaa wahhab

RELATIONSHIP BETWEEN ATOMS AND

 MOLECULESMolecules : are joining of two or more atoms, which are the most basic unite of physical matter .

Molecule

> Mrater $\left(H_{2} O\right)$ $\begin{array}{ll}\text { H Hydrogen } & O \times y G e n\end{array}$

Matter : anything that it can take place or anything that has mass and volume .

What is the state of matter?

Solid :a state of matter that has a definite shape and volume .

Liquid : A state of matter that has no definite shape but has a definite volume .

Gas : a state of matter that has no definite shape or volume .

Plasma : a state of matter that are have very large of energy (the electrons of atoms cannot stay in orbitals around one atomic nucleus.

classification of matter

Debroley equation

The de Broglie equation is an equation used to describe the wave properties of matter, specifically,

The Debroley concluded that electrons might have wavelength by first
combining tow relationships, one derived by Einstein, the other by plank.

De Broglie's Equation

Where

 $v=$ the vel ocity in meters/sec $\mathrm{m}=$ the mass in kilograms $\mathrm{h}=$ Plancks's constant in $\mathrm{J} / \mathrm{Hz}$$$
\begin{aligned}
& \mathrm{E}=\mathrm{hf} ~ \\
& \mathrm{E}=\mathrm{mc}^{2} . ~ \\
& 2(\text { Pinstein eq) })
\end{aligned}
$$

From eq1 and eq $2 \mathbf{h f}=\mathrm{mc}^{2}$

And $\mathrm{f}=(\mathrm{cv} / \lambda)$

(hcv/ λ) $=\mathrm{mc}^{2}$
$(h v / \lambda)=m c$
$h=\lambda m c, c=v \backslash v$
$\lambda=(h /(\mathrm{mv})$

First class

General chemistry

Article teacher

M.s.c Roaa wahhab

Solution : is a special type of homogeneous

 mixture composed of two or more substances

Types of solutions

1. True solution.
2. Suspended solution.
3. Colloidal solution ratio to atoms or molecules or ions the solute to solvent.
4. Saturated solution.
5. Unsaturated solution.

6. Supper saturated solution

Methods for expressing chemical

concentrations

1- Formality and Formal
concentration (F)
2- Morality and Molar
concentration (M)
3- Normality and Normal
concentration (N)
4- Percent Composition

5- Parts per million (ppt)

6-Molality (L)

Molar concentration or morality is most commonly expressed in units of moles of solute per liter of solution

Molarity

- Molarity is defined as the amount of moles of a compound dissolved in an amount of solvent (usually water).
- It can be solved with the equation:

Molarity (M) = liters of solute

Normality and Normal concentration (N)

Normality is a measure of concentration equal to
the gram equivalent weight per liter of solution.

$$
\begin{aligned}
& \mathrm{N}=\frac{\mathrm{wt}(\mathrm{~g}) \times 1000}{\text { Equivalent weight } \times \mathrm{V}} \Rightarrow \frac{\mathrm{wt}(\mathrm{~g}) \times 1000}{\mathrm{Eq} \cdot \mathrm{wt} \times \mathrm{V}} \\
& \text { Equivalent weight }=\frac{\text { Molecular weight }_{\text {Number of } \mathrm{H}^{+} \text {in acid or } \mathrm{OH}^{-} \text {in base }}^{\mathrm{N}} \Rightarrow \frac{\mathrm{M} \cdot \mathrm{~W}}{\mathrm{n}}}{}
\end{aligned}
$$

Molality: (L)

Molality is a measure of number of moles of solute

present in $1 \mathbf{k g}$ of solvent

$$
\begin{aligned}
\text { Molality }=m & =\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }} \\
m & =\frac{\mathrm{mol}}{\mathrm{~kg}}
\end{aligned}
$$

Percent Composition

$$
\begin{array}{r}
\text { weight percent }(\mathrm{w} / \mathrm{w})=\frac{\text { weight solute }}{\text { weight solution }} \times 100 \% \\
\text { volume percent }(\mathrm{v} / \mathrm{v})=\frac{\text { volume solute }}{\text { volume solution }} \times 100 \% \\
\text { weight/volume percent }(\mathrm{w} / \mathrm{v})=\frac{\text { weight solute, } \mathrm{g}}{\text { volume solution, } \mathrm{mL}} \times 100 \%
\end{array}
$$

Parts per million (ppt)

ppm (parts per million)

used to represent very dilute solutions
ppm: one part solute in 1,000,000 parts water

$$
\mathrm{ppm}=\frac{\text { mass solute }}{\text { mass solution }} \times 10^{6}
$$

First class
General chemistry lecture

Article teacher
M.s.c Roaa wahhab

Dilution of concentration solution

refers to the process of adding additional solvent to a solution to decrease its concentration.

This process keeps the amount of solute constant, but increases the total amount of solution, thereby decreasing its final concentration.

A concentrated solution is one that has a relatively large amount of dissolved solute.

A dilute solution is one that has a relatively small amount of dissolved solute.

However, these terms are relative, and we need to be able to express concentration in a

more exact, quantitative manner

the following steps describe the procedure for making a solution of a specific molarity
from a pure, solid substance.
1 - First, weigh out the correct mass of solute.
2- Dissolve the solute in water, keeping the volume less than the desired total volume of solution.

3- Dilute the solution to the desired total volume of solution.

stock solution is a concentrated solution that will be diluted to some lower concentration for actual use.

Stock solutions are used to save preparation time, conserve materials, reduce storage space,
and improve the accuracy with which working lower concentration solutions are prepare

$+1 \mathrm{~mL} \quad+1 \mathrm{~mL} \quad+1 \mathrm{~mL}$

preparation of molar solution

Molar solutions are prepared by dissolving the gram molecular weight of the solute making 1 liter of solution.

It means, to prepare 1 liter solution, we have to dissolve the solute equal to the molecular weight of the solute in grams in one liter of solvent .

Example :
Preparation of 1 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecular weight of $\mathrm{H}_{2} \mathrm{SO}_{4}=2(1)+32+64=98$

We require 98 grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to prepare 1liter of $\mathbf{1 M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.

Example :
Preparation of 1 M solution of NaOH
molecular weight of $\mathbf{N a O H}=\mathbf{2 3 + 1 6 + 1 = 4 0}$
we require 40 gm of NaOH to prepare 1liter of 1 M NaOH solution.

Normal solutions are prepared by dissolving gram equivalent weight of solute making 1 liter of solution. It means, to prepare 1 liter solution, we have to dissolve the solute equal
to the equivalent weight of the solute in grams.
$Q \backslash$ Calculate the expressions for a solution of HCl in water if $(0.5 \mathrm{eq} \mathrm{HCl})$ is dissolved in an amount of water so that the volume of the solutions becomes $(500 \mathrm{~mL})$?

Normality $=\frac{E Q}{V} \times 1000 \quad \therefore$ Nomality $=\frac{0.5}{500} \times 1000=1 \mathrm{~N}$
$Q \backslash$ Calculate the titer of the solution resulting from dissolving 19.5 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water to form a solution of volume of 800 mL .

Atomic weights: ($\mathrm{H}=1, \mathrm{O}=16, \mathrm{~S}=32$) ?

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+32+(4 \times 16)=98 \mathrm{~g} / \mathrm{mol}} \\
& \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{19.6}{98}=0.2 \mathrm{~mol} \\
& \mathrm{EQ}=\mathrm{n} \times \mathrm{a} \\
& \text { Normality }=\frac{\mathrm{EQ}}{\mathrm{~V}} \times 1000
\end{aligned} \quad \therefore \mathrm{EQ}=0.2 \times 2=0.4 \mathrm{eq}, ~ \text { Normality }=\frac{0.4}{800} \times 1000=0.5 \mathrm{~N} .
$$

$\mathrm{Q} \backslash$ Howe many grams of NaCl should be used to prepare 300 ml of 0.2 M solution ?

$$
\text { Step 1: } \begin{aligned}
0.20 \mathrm{M} \mathrm{NaCl} & =\frac{x \mathrm{~mol}}{0.3 \mathrm{~L} \text { solvent }} \\
x & =0.20 \mathrm{M} \mathrm{NaCl} \times 0.3 \mathrm{~L} \text { solvent } \\
& =0.06 \mathrm{~mol} \mathrm{NaCl}
\end{aligned}
$$

Step 2:
The molar mass of NaCl is $58.44 \mathrm{~g} / \mathrm{mol}$.

$$
0.06 \mathrm{~mol} \mathrm{NaCl} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \text { mol NaCl }}=3.51 \mathrm{~g} \mathrm{NaCl}
$$

Percent composition : is calculated from a molecular formula

Wight solute\ wight solution

Volume solute \volume solution

Wight solute \volume solution
. This value is presented as a percentage

$$
\text { weight percent }(\mathrm{w} / \mathrm{w})=\frac{\text { weight solute }}{\text { weight solution }} \times 100 \%
$$

$$
\text { volume percent }(\mathrm{v} / \mathrm{v})=\frac{\text { volume solute }}{\text { volume solution }} \times 100 \%
$$

weight/volume percent $(\mathrm{w} / \mathrm{v})=\frac{\text { weight solute, } \mathrm{g}}{\text { volume solution, } \mathrm{mL}} \times 100 \%$

$Q \backslash$ Calculate the mass of water needed to

 dissolve 10 g of ethyl alcohol if you know that the alcohol by weight is 32% ?$$
\begin{array}{ll}
\mathrm{W} t \%=\frac{\mathrm{m}_{1}}{\mathrm{~m}_{\text {sol }}} \times 100 & \therefore 32=\frac{10}{\mathrm{~m}_{\text {sol }}} \times 100 \\
\mathrm{~m}_{\text {sol }}=\frac{10}{32} \times 100=31.25 \mathrm{~g} \\
\mathrm{~m}_{2}=31.25-10=21.25 \mathrm{~g} &
\end{array}
$$

$Q \backslash$ Calculate the weight ratio of sodium sulfate $\mathrm{Na}_{2} \mathrm{SO}_{4}$ when 142 g is dissolved in 25 mol of water ?

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{H}_{2} \mathrm{O}}=(2 \times 1)+16=18 \mathrm{~g} / \mathrm{mol} & \\
\mathrm{~m}_{2}=\mathrm{n} \times \mathrm{M} & \therefore \mathrm{~m}_{2}=25 \times 18=450 \mathrm{~g} \\
\mathrm{~m}_{\mathrm{sol}}=\mathrm{m}_{1}+\mathrm{m}_{2} & \therefore \mathrm{~m}_{\mathrm{sol}}=142+450=592 \mathrm{~g} \\
\mathrm{Wt} \%=\frac{\mathrm{m}_{1}}{\mathrm{~m}_{\text {sol }}} \times 100 & \therefore \mathrm{Wt} \%=\frac{142}{592} \times 100=24 \%
\end{array}
$$

parts per million (ppm) :is the number of

 units of mass of a contaminant per million units of total mass.More: ppm is used to measure the concentration of a contaminant in soils and sediments. In that case 1 ppm equals 1 mg of substance per kg of solid ($\mathrm{mg} / \mathrm{kg}$).

$\mathrm{ppm}(\mathrm{m} / \mathrm{m})=$ mass solute $\times 10^{6}$

mass solution

Q \If you have 25 moles of water $\mathrm{H}_{2} \mathrm{O}$ and

 you want to get 90,000 of HCL , what mass of acid is needed?$\operatorname{Ppm}(90,000)=\frac{x}{(16+2) * 25} * 10^{6}$
$X=44,51 \mathrm{gm}$

Molality: is a measure of the number of moles of solute in 1 kg or 1000 g of solvent

$$
\begin{aligned}
\text { Molality }=m & =\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }} \\
m & =\frac{\mathrm{mol}}{\mathrm{~kg}}
\end{aligned}
$$

Q \When dissolving 20 g of Sodium chloride NaCl in amount of water so that the mass of the solution becomes 90 g .

Calculate the molality of the solution?(Note that the atomic masses: $(\mathrm{Na}=23, \mathrm{Cl}=35.5)$?

$$
\begin{aligned}
& \mathrm{Mw}_{\mathrm{NaCl}}=23+35.5=58.5 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{n}_{\mathrm{NaCl}}=\frac{\mathrm{m}}{\mathrm{Mw}}=\frac{20}{58.5}=0.34 \mathrm{~mol} \\
& \mathrm{~m}_{2}=\mathrm{m}_{\text {sol }}-\mathrm{m}_{1} \\
& \mathrm{~m}_{2}=90-20=70 \mathrm{~g} \\
& \text { molality }=\frac{\mathrm{n}_{1}}{\mathrm{~m}_{2}} \times 1000 \\
& \text { molality }=\frac{0.34}{70} \times 1000=4.86 \text { molal }
\end{aligned}
$$

Roaa w.m

Sixth lecture

Article teacher

M.s.c Roaa wahhab
chemical equilibrium
In a chemical reaction, chemical equilibrium is the state in which both reactants and products are present in concentrations which have no further tendency to change with time, The reaction

Roaa w.m

rates of the forward and backward reactions are generally not zero .
there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium
chemical equilibrium, condition in the course of a reversible chemical reaction in which no change in the amounts of reactants and products occurs. ...

At equilibrium, the two opposing reactions go on at equal rates, or velocities, and hence there is no change in the amounts of substances involved .

Types of chemical Equilibrium:

There are two types of chemical Equilibrium Homogeneous Equilibrium

In this type of equilibrium, all reactants and all products are in the same phase.

In homogeneous gaseous equilibrium, all reactants and all products are in a gaseous state.
$\mathrm{H} 2(\mathrm{~g})+\mathrm{I} 2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
$\mathrm{N} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$

In homogeneous liquid equilibrium, all reactants and all products are in liquid state.
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

In this type of reaction, reactants and products are in two or more phases.
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{I})+4 \mathrm{H}_{2}(\mathrm{~g})$

Since the ionization of a weak acid is an equilibrium, a chemical equation and an equilibrium constant expression can be written:

Roaa w.m

$\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \stackrel{\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}(\mathrm{aq})}{ }$

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{A}]}{[\mathrm{HA}]}
$$

The equilibrium constant for the ionization of an acid is called the acid ionization constant (Ka) A stronger acid will be a better proton donor

Strong and Weak Acids and Acid Ionization Constant

Acids are classified as either strong or weak, based on their ionization in water.

A strong acid is an acid which is completely ionized in an aqueous solution.

Hydrogen chloride (HCl) ionizes completely into hydrogen ions and chloride ions in water.
$\mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{H}+(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq})$

A weak acid is an acid that ionizes only slightly in an aqueous solution.

Acetic acid (found in vinegar) is a very common weak acid. Its ionization is shown below.
$\mathrm{CH} 3 \mathrm{COOH}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$

The ionization of acetic acid is incomplete, and so the equation is shown with a double arrow.

Weak acids, like strong acids, ionize to yield the H^{+}ion and a conjugate base.

Roaa w.m

Because HCl is a strong acid, its conjugate

 base (Cl^{-}) is extremely weak. The chloride ion is incapable of accepting the H^{+}ion and becoming HCl again.In general, the stronger acid, its have weaker conjugate base.

Likewise, the weaker acid, its have stronger conjugate base .

pH and Equilibrium

According to the Arrhenius theory of acids and bases, when an acid is added to water, it donates an H^{+}ion to water to form $\mathrm{H}_{3}{ }^{+}$ (often represented by H^{+}).

The higher concentration of $\mathrm{H}_{3}{ }^{+}$(or H^{+}) in a solution, the Arrhenius acids

And Arrhenius base is a substance that agenerates hydroxide ions, OH -, in water.

Pure water undergoes a reversible reaction in which both $\mathrm{H}+$ and OH - are generated

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The equilibrium constant for this reaction, called the water dissociation constant, Kw , is 1.01×10^{-14} at $25^{\circ} \mathrm{C}$.
$K w=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.01 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$

Because every $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$ion that forms is accompanied by the formation of an OH^{-}ion, the concentrations of these ions in pure water are the same and can be calculated from Kw.

$$
K w=\left[H^{+}\right]\left[\mathrm{OH}^{-}\right]=(x)(x)=1 \times 10^{-14}
$$

$x=\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$

EXAMPLE 1 -

Determining the Molarity of Acids and Bases in Aqueous Solution: Determine the molarities of H^{+}and OH^{-}in a 0.025 M HCl solution at $25^{\circ} \mathrm{C}$.

Solution

$\left[\mathrm{H}^{+}\right]=0.025 \mathrm{M}$
We can calculate the concentration of OH^{-}by rearranging the water dissociation constant expression to solve for [OH -] and plugging in 1.01×10^{-14} for Kw and 0.025 for $\left[\mathrm{H}^{+}\right]$
$\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{w}}{\left[\mathrm{H}^{+}\right]}=\frac{1.01 \times 10^{-14}}{0.025}=4.0 \times 10^{-13} \mathrm{M} \mathrm{OH}^{-}$

pH and pOH

Adding an acid to water increases the $\mathrm{H}_{3}{ }^{+}$ ion concentration and decreases the OH^{-}ion concentration.

Adding a base does the opposite.
Regardless of what is added to water, however, the product of the concentrations of these ions at equilibrium is always 1.0×10^{-14} at $\mathbf{2 5} \mathrm{C}^{\mathbf{0}}$.
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$

$$
\mathrm{pOH}=-\log [\mathrm{OH}-]
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

EXAMPLE 2 - Determining the Molarity of Acids in Aqueous Solution (molarities of H^{+}) in a $2.9 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$ solution at $30^{\circ} \mathrm{C}$.

Solution:

$$
\mathrm{Kw}=1.47 \times 10^{-14} \text { at } 30^{\circ} \mathrm{C}
$$

Sodium hydroxide is a water-soluble ionic compound and a strong electrolyte, so we assume that it is completely ionized in water,

making the concentration of OH - equal to the NaOH concentration.

$\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.47 \times 10^{-14}}{2.9 \times 10^{-3}}=5.1 \times 10^{-12} \mathrm{M} \mathrm{H}^{+}$

Electrolyte

An electrolyte is any substance that

 contains free ions that form an electrical medium. Electrolytes are usually found in acide, alkaline, or saline solutions.

Ionization of electrolytes

Substances that give ions when dissolved in water are called electrolytes. ... Strong electrolytes completely ionize when dissolved, and no neutral molecules are formed in solution

Does a weak electrolyte ionize in a solution?

Electrolytes are substances which, when dissolved in water, break up into cations (plus-charged ions) and anions (minuscharged ions). We say they ionize.

Strong electrolytes ionize completely (100\%), while weak electrolytes ionize only partially (usually on the order of 1-10\%)

Why water is a weak electrolyte?
The pure water molecules do not contain enough ions to transfer to the electrons from one end to another end.

This property makes water a weak electrolyte.
To be a strong electrolyte it must ionize into its constituent ion but in case of pure water, it ionizes very slightly into its ions making it a weak electrolyte

What is weak electrolyte in chemistry?
A weak electrolyte is an electrolyte that does not completely dissociate in aqueous solution.

The solution will contain both ions and molecules of the electrolyte.

Weak acids and base

$\mathrm{HCL}+\mathrm{H} 2 \mathrm{O} \longrightarrow \mathrm{H}^{+}+\mathrm{CL}^{-}$ 0.05M 0.05M
$\mathrm{PH}=-\log [\mathrm{H} 3 \mathrm{O}+] \quad \mathrm{PH}+\mathrm{POH}=14$
$\mathrm{POH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{PH}=14-\mathrm{POH}$
$\mathrm{POH}=14-\mathrm{PH}$
$\mathrm{HF}+\mathrm{H} 2 \mathrm{O}$ \qquad $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$
$K a=\frac{[H 3 O+][F-]}{[H F]}$
$\mathrm{NH} 3+\mathrm{H} 2 \mathrm{O}$ $\mathrm{NH}^{+}{ }^{+} \mathrm{OH}^{-}$
$\mathrm{Kb}=\frac{[\mathrm{NH} 4+][\mathrm{OH}-]}{[\mathrm{NH} 3]}$
$\mathrm{POH}=-\mathrm{Log}[\mathrm{OH}]$
$\mathrm{PH}=14 \mathbf{- P O H}$
$K W=K a . K b=1 \times 10^{-14}$ at $25 \mathrm{C}^{0}$
At same time $\left[\mathrm{H}_{3}{ }^{+}\right]=10^{-\mathrm{PH}}$
$\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{POH}}$
$[\mathrm{H} 3 \mathrm{O}+][\mathrm{OH}-]=1 \times 10^{-14}$
Acid strength \prod_{Ka} § pka \downarrow
Pka $=-\log k a \quad \quad$ pkb $=-\log k b$
Pka $+\mathrm{pkb}=14$
\%lonization $=\frac{x}{[H A]} \times 100$
$X=\left[\mathrm{H}_{3}{ }^{+}\right]$acid $\quad X=\left[\mathrm{OH}^{-}\right]$Base

Example

What is the PH of 0.075 M HC2H3O2 solution? $\mathrm{ka}=18 \times 10^{-5}$

$\mathrm{HC2H2O2}+\mathrm{H} 2 \mathrm{O}$	$\mathrm{H} 3 \mathrm{O}^{+}+\mathrm{C} 2 \mathrm{H} 3 \mathrm{O} 2$	
0.75 M	0	0
$-X$	$+X$	$+X$
$0.75-X$	X	X

Roaa w.m

$\mathrm{Ka}=\frac{[\mathrm{H} 3 \mathrm{O}+\mathrm{]}[\mathrm{C} 2 \mathrm{H} 3 \mathrm{O} 2-]}{[\mathrm{HC} 2 \mathrm{H} 2 \mathrm{O} 2]}$
$1.8 \times 10^{-5}=\frac{[X][X]}{0.75-X} \longrightarrow 1.8 \times 10^{-5}=\frac{X 2}{0.75}$
$X^{2}=1.35 \times 10^{-5} \quad X=3.674 \times 10^{-3} \mathrm{M}$
[$\mathrm{H} 3 \mathrm{O}+$] $=\mathrm{X}$
PH =-Log[H30+]
$\mathrm{PH}=-\log \left[3.674 \times 10^{-3}\right] \quad \mathrm{PH}=2.43$
$\mathrm{Q} \backslash$ what is the PH of o. $40 \mathrm{M} \mathrm{NH4CL}$ Solution ? kb of $\mathrm{NH} 3=$ 1.8×10^{-5} $\mathrm{PH}=8.6$

Seventh lecture

Article teacher

M.s.c Roaa wahhab

Buffer solution

A buffer is a chemical solution that resists any change in the concentration of the hydronium ion and the hydroxide ion, when small amounts of a strong acid or base are added to it, or when the solution is diluted. Thus, it "regulates", maintains the pH at a constant value.

A buffer solution consists of a mixture of a weak acid and one of its salts, or a mixture of a weak base and one of its salts.

A buffer solution is a solution that only changes
slightly when an strong acid or a base is added to it.

ther are two type of buffer solution

its dived into two types - acidic and alkaline buffer solutions.

Acidic buffers are solutions that have a pH below 7 and contain a weak acid and one of its salts. For example, a mixture of acetic acid and sodium acetate acts as a buffer solution with a pH of about 4.75 , and mixture of ammonium chloride and ammonium hydroxide acts as a buffer solution with a of about 9.25.

TYPES OF BUFFERS

Two types:

- ACIDIC BUFFERS -

Solution of a mixture of a weak acid and a salt of this weak acid with a strong base.
E.g. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$ (weak acid) (Salt)

B BASIC BUFFERS -

Solution of a mixture of a weak base and a salt of this weak base with a strong acid.
e.g. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$ (Weak base) (Salt)

How is buffer solution made?

How Do You Make a Buffer? A buffer is made by mixing a large volume of a weak acid or weak base together with its conjugate base or acid.

Buffers maintain constant pH

PH(buffer)

May be defined as the negative logarithm of the hydrogen ion concentration. PH= $-\log [\mathrm{H}+$]

The pH Scale

Example:

What is the value pH of HCl 0.0001 M .

$$
\begin{aligned}
& \mathrm{PH}=\cdot \log \left[\mathrm{H}^{1]} \quad \mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-1}\right. \\
& {[\mathrm{H}]=10^{-4} \quad 0.000 \mathrm{M} \quad .0001 \mathrm{M} 0.0001} \\
& \mathrm{PH}=\cdot \log \left[10^{-1}\right]=\log 10^{-4}=.(-4)=4
\end{aligned}
$$

$$
\begin{aligned}
& =(2)=(2)= \\
& \int= \\
& M H=-13 t=2 l
\end{aligned}
$$

Dissociation of weak electrolyte buffer solutions

```
Weak acid and base
CH
Acetic acid
    [CH3COO}][\mp@subsup{\textrm{H}}{}{+}
```



```
\mathrm { NH } _ { 4 } \mathrm { OH } \longleftrightarrow \mathrm { NH } _ { 4 } ^ { - } + \mathrm { OH } ^ { - }
    [ NH4.][OH-
Kb}=
    [ NH44OH]
```


Buffer calculation

$\mathbf{p H}=\mathbf{p k a}+\log ($ salt $) /($ acid $)$

PoH $=$ pkb+ log(salt) $/($ base,

Example : What ratio of acetic acid to salt or acetate is needed to form a buffer whose $\left[\mathrm{H}^{+}\right]=2 \times 10^{-6} \mathrm{M}$ and $\mathrm{Ka}=1.8 \times 10^{-5}$ $\left.\left[\mathrm{H}^{+}\right]=\mathrm{Ka} \times \xrightarrow[{[\mathrm{acid}}]\right]{[\text { salt }]} \rightarrow$ [acid] $=\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{Ka}}=\frac{2 \times 10^{-6}}{1.8 \times 10^{-5}}=\frac{1}{9}$

Example: A buffer solu. Is prepared by mixing benzoic acid and benzoate salt conc. Of both 0.1 M . What is pH of this buffer? $\mathrm{Ka}=6.5 \times 10^{-5} \quad, \quad \log 6.5=0.8$ $\mathrm{pKa}=-\log \mathrm{Ka}$ $\mathrm{pKa}=-\log 6.5+5$ $\mathrm{pKa}=-\log 6.5-\log 10^{-5}$ pKa [salt]
$\mathrm{pH}=\mathrm{pKa}+\log --\cdots-\cdots]$ $\mathrm{pKa}=4.19$
$\mathrm{pH}=4.19$

First class
general chemistry
Eighth lecture

Volumetric Analysis:
 Titration

Article teacher
M.s.c Roaa wahhab

Volumetric analysis:

A quantitative analysis based upon the measurement of volume.

The analytical method where in the concentration of a substance in a solution is estimated by adding exactly the same number of equivalents of another substance present in a solution of known concentration is called volumetric analysis. ... Another name for volumetric analysis is titrimetric analysis

Titration :is the process by which the quantity of analyte in a solution is determined from the amount of a standard reagent it consumes .

Standard solution : the reagent of exactly known concentration that is used in a titration.

Volumetric analysis refers to any procedure in which the volume of reagent needed to react with the analyte is being measured.

In this chapter we will learn:

- the principles in volumetric procedure
- methods in volumetric analysis

One method in volumetric analysis is titration

In titration:

- substance to be
analysed is known as the analyte
- the solution added to the analyte is known as the titrant
- titrant is usually delivered
 from a buret

Principles of Volumetric analysis

A titration is a process whereby a known standard reagent is delivered from a buret to the analyte until the reaction is complete. Titrations may be based on a variety of chemical reactions such as acid/base, redox, complexation, or precipitation.

Titrant : solution of a known concentration, which is added to another solution whose concentration has to be determined.

A primary standard solution : is a highly

 purified compound that serve as a reference material in all volumetric titrimetric methods.Important requirements for a primary standard are

1-High purify.
2-Stability toward air.
3-Absence of hydrate water.
4-Ready availability at modest cost.
5-Reasonable solubility in the titration medium. 6-Reasonable large molar mass .

Titrand or(analyte): the solution whose concentration has to be determined

Types of titrations

- Acid-base titration
- Precipitation titration
- Redox titration

- Complexometric titration

Types of Titration

Neutralization Reaction

What is a Neutralization Reaction?

A neutralization reaction can be defined as a chemical reaction in which an acid and base quantitatively react together to form a salt and water as products.

In a neutralization reaction, there is a combination of \mathbf{H}^{+}ions and OH^{-}ions which form water.

NEUTRALIZATION REACTION EQUATION

ACID + BASE

Application of Neutralization Reaction (Titration methods):

The method of chemical titration is employed to find unknown concentrations of acids or bases by finding their neutralization point.
when an acid and a base react to form water and a salt and involves the combination of
($\mathrm{H}+$ ions and $\mathbf{O H}$-ions).

- The neutralization of a strong acid and strong base has a pH equal to 7.
- The neutralization of a strong acid and weak base will have a pH of less than 7
- conversely, the resulting pH when a strong base neutralizes a weak acid will be greater than 7

Oxidation-Reduction Reactions

(redox) reaction

is a type of chemical reaction that involves a transfer of electrons between two species.

An oxidation reduction reaction is any chemical reaction in which
the oxidation number of a molecule, atom, or ion changes by gaining or losing an electron.

Reducing Agents and Oxidizing Agents
\square The substance reduced is the oxidizing agent
The substance oxidized is the reducing agent

$$
\stackrel{0}{N} a \rightarrow \stackrel{+1}{N} a+e^{-}
$$

Sodium is oxidized - it is the reducing agent

$$
\stackrel{0}{C l}+e^{-} \rightarrow \stackrel{-1}{C l}
$$

Chlorine is reduced - it is the oxidizing agent

Types of Redox Reactions.

The five main types of redox reactions are

Combination
Decomposition displacement

combustion

dis proportion
combination reactions: two elements are combined.

$$
A+B \longrightarrow A B
$$

decomposition reactions: a compound is broken
down into its constituent parts.
$A B \longrightarrow A+B$.
displacement reactions: one or more atoms is swapped out for another.

$$
A B+C \longrightarrow A+C B
$$

combustion reactions: a compound reacts with oxygen to produce carbon dioxide,
water, and heat.

Combustion Reaction

disproportionation reactions:

$$
\begin{array}{ccc}
2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} & \mathrm{O}_{2} \\
& -2 & 0 \\
& & \\
& & \\
&
\end{array}
$$

there are reactions where a molecule, atom, orion can at the same time be simultaneously oxidized and reduced

Application of redox titrations

A volumetric method of analysis
which relies on oxidation or reduction of the analyte using redox indicators or potentiometriy.
changes in solution potential
during a titration basic calculations methods of sample preparation.

precipitation reactions

Precipitation reactions occur when cations and anions in aqueous solution combine to form an insoluble ionic solid called a precipitate.
Whether or not such a reaction occurs can be determined by using the solubility rules for common ionic solids.

Precipitation Reactions

- Result when two soluble compounds mix and an insoluble (solid) compound is produced.

$$
\mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{NaCl}_{(\mathrm{aq)}} \rightarrow \underline{\mathrm{AgCl}_{(\mathrm{s})}}+\underline{\mathrm{NaNO}}_{3}(\mathrm{aq})
$$

This is the insoluble compound (precipitate). Precipitation is established by looking at the solubility table. Insoluble compounds are designated (s) for solid.

This compound is soluble. The (aq) designates that it dissolves in water.

precipitation titration

Precipitation titration is a type of titration which involves the formation of precipitate during the titration technique.

In precipitation titration, the titrant reacts with analyte and forms an insoluble substance called precipitate.

It continues till the last amount of analyte is consumed.

INDICATORS

Theory of Indicator:

- An indicator is a substance which is used to determine the end point in a titration.
- In acidbase titrations, organic substances (weak acids or weak bases) are generally used as indicators.
- They change their colour within a certain pH range.
a theory of acid base indicators which gives an explanation for the colour change with change in pH .

According to this theory, a hydrogen ion indicator is a weak organic acid or base. The un dissociated molecule will have one colour and the ion formed by its dissociation will
have a different colour .

acid-base indicator table

indicator	pH range	color for weak acid	color for conjugate base
methyl orange	$4-6$	orange	yellow
bromophenol blue	$6-7$	yellow	blue
thymol blue	$8-9$	yellow	blue
phenolphthalein	$9-10$	colorless	pink
alizarin yellow	$10-12$	yellow	red

Indicators of chemical reactions

Emission of light or heat

Formation of a gas
Formation of a precipitate change

Emission of odor

The first class

general chemistry

The ninth lecture

Msc: Roaa wahhab

Colorimetric analysis

In this student can determine the concentration from absorbance with a colorimeter, in this method they must first calibrate with solution of known concentration, they must decide which wavelength to use for these measurements.

- This method is similar to

UV-VISIBLE SPECTROSCOPY in that it uses a light beam to measure light absorption

Spectrophotometer

spectrophotometer is an instrument that measures the amount of photons (the intensity
of light) absorbed after it passes through sample solution.

With the spectrophotometer, the amount of a known chemical substance
(concentrations) can also be determined by measuring the intensity of light detected

Spectrophotometer Principle

A Spectrophotometer is based on the principle of turbidity determination.

Turbidity or optical density is the cloudiness of the suspension.

The more turbid a suspension, the less light will be transmitted through it. In other words, the amount of light absorbed and scattered is proportional to the mass of cells in the light path.

What is the function of a spectrophotometer?

Spectrophotometers measure light intensity as a function of wavelength and are commonly used to measure the concentration of a compound in an aqueous solution

Components of spectrophotometer

A spectrophotometer contain these following components;

Light Source: The light source is required to generate lights within the spectrophotometer.
lens: This lens points the light to a monochromator or prism from the light source.

A monochromator (Prisms): It is used to separate the polychromatic radiation into component wavelength (or) bands of wavelengths

Roaa .w.m
Wavelength selector (slit): It selects a particular wavelength of light from the splited
wavelengths and passes it through the cuvette.
(cuvettes): The cuvette is used to hold the sample to be studied. It is made up of Quartz.

A Photosensitive detector and an associated readout system

Beer - Lambert law

What is the Beer-Lambert Law?

The Beer-Lambert law is a linear relationship between the absorbance and the concentration, molar absorption coefficient and optical coefficient of a solution

Beer-Lambert Law

$$
A=a b c
$$

Which states that "the absorbance of a solution is directly proportional with the concentration of the dissolved substance" Where:

- \mathbf{A} is the absorbance
- $\quad a$ is the molar absorptivity coefficient.
- b is the light bath through a solution.

For x substance:
(1)

$$
\operatorname{Abs}(x)=a b \operatorname{Conc} .(x)
$$

For standard substance:
Abs(st) = a b Conc.(st)
(2)

in analytical chemistry, a calibration curve, also known as a standard curve, is a general method for

Roaa .w.m
determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration

Standard curve

A standard curve, also known as a calibration curve or calibration line, is a type of graph used as a quantitative research technique.

Multiple samples with known properties are measured and graphed, which then allows the same properties to be determined for unknown samples by interpolation on the graph.

