
1

التقنية الاوسط جامعة الفرات

 بابل/ني المعهد التق

الاولى المرحلة / طبيةالجهة لااقسم تقنيات

Logic Gates

2

The basic logic gates are the inverter (or NOT gate), the AND gate,

the OR gate and the exclusive-OR gate (XOR). If you put an inverter

in front of the AND gate, you get the NAND gate etc.

3

One of the common tool in specifying a gate function is the truth

table. All possible combination of the inputs A, B … etc, are

enumerated, one row for each possible combination. Then a column

is used to show the corresponding output value. If two logic circuits

share identical truth table, they are functionally equivalent. Here are

examples of truth tables for logic gate with 2, 3 and 4 inputs.

4

)

Here we show five different representations of the OR gate or OR function. They

are:

1. Schematic diagram in a logic symbol

2. Truth table

3. Boolean expression

4. Timing diagram

5. Expression in programming language (e.g. Python)

5

In summary, OR operation produces as result of 1 whenever any input is 1.

Otherwise 0.

An OR gate is a logic circuit that performs an OR operation on the circuit's

input.

The expression x=A+B is read as “x equals A OR B”

6

The AND operation is performed the same as ordinary multiplication

of 1s and 0s. An AND gate is a logic circuit that performs the AND

operation on the circuit‟s inputs.

An AND gate output will be 1 only when all inputs are 1; for all

other cases the output will be 0.

The expression x=A.B is read as “x equals A AND B.”

7

The NOT gate (inverter) is simple, but important. Note the difference

between a Boolean operator “not A”, where A is a Boolean variable

(i.e. True or False), and that for a multiple bit variable. In multiple

bit case, ~A results in EACH BIT within A being inverted. This is

also known as “bitwise” operation.

8

Using symbolic diagram or truth table to specify or describe logic

gates and logic functions is cumbersome. A much better way is to use

algebraic expression. Here a “dot” represents the AND operation, and

a “+” represents and OR operation. Furthermore, a bar over a variable

or a „/‟ in front of the variable represents an inversion (NOT

function).

The convention is that AND has precedence over OR.

Precedence rules in Boolean algebra:

1. First, perform all inversions of single terms

2. Perform all operations with parentheses

3. Perform an AND operation before an OR operation

unless parentheses indicate otherwise

4. If an expression has a bar over it, perform the operations

inside the expression first and then invert the result

9

Inversion in Boolean expression has a bar over the Boolean variable. Here are a

number of examples.

10

We often do not draw the full inverter, but use a circle to indicate

inversion. Therefore shown here on the top circuit, there is a 2- input

OR gate followed by an inverter, making it a NOR gate. To evaluate

the output of this circuit for inputs shown, we propagate the input

values through the gates from left to right.

11

Given a Boolean expression, we can easily translate it to symbolic

representation of gates. This is quite easy to do.

12

Just like normal algebra, Boolean algebra allows us to manipulate the

logic equation and perform transformation and simplification.

Boolean algebra obeys the same laws as normal algebra:

1. the commutative law – the order of the Boolean variables do

not matter

2. the associative law – the order of the Boolean operators do not

matter

3. The distributive law –one can distribute a Boolean operator into

the parenthesis

13

There are also a number of rules to help simplification of Boolean

expression. The first 9 rules listed here are obvious.

Rule 10: Less obvious, but it is clearly shown here that it is true.

14

Rule 11 and Rule 12 are more difficult. You may need to

remember them in order to apply them for the purpose of

simplifying Boolean expressions.

15

Above are three examples of simplification of Boolean expressions.

16

De‟Morgan‟s Theorems is important to Boolean logic. They allow us

to exchange OR operation with AND operation and vice versa.

Applying De‟Morgan, we can also simplify Boolean expression in

many cases.

17

De‟Morgan requires an inverter output. Here is symbolic representation

of De‟Morgan: move the inversion to the inputs, and change OR to

AND, or AND to OR.

18

Let us assume that we ONLY have 2-input NAND gate. From this, we

can get an inverter, an AND gate, and, thanks to De‟Morgan, we can also

get an OR gate. In other words, if we have a 2-input NAND gate, we can

build the three basic logic operators: NOT, AND and OR. As a result, we

can build ANY logic circuit and implement any Boolean expression.

Taken to limit, give me as many NAND gate as I want, in theory I can

build a Pentium processor. This shows the universality of the NAND

gate. Similarly, one can do the same for NOR gates.

19

The exclusive-OR gate is high only if the two inputs are

DIFFERENT, i.e. either A is high OR B is high but not both. The

XOR gate is often used as logic comparator (output is 0 if the two

inputs are equal).

20

Now let us take a functional view of logic operators.

The AND operator can be interpreted as having an enabling or

disabling function. (We sometimes call this a „gating function” as if it

perform a gate keeping (i.e blocking) function.) Input B here is a the

gating control – if B = 1, it lets A through, otherwise if B = 0, it

blocks A.

The OR operator can be interpreted as a merging function. It

combines both A and B high level and merge them to form output X.

The XOR gate can be viewed as a selectable inverter. If B = 0, A is

pass to the output. If B = 1, A is inverted. So B determines inversion,

or no inversion of A.

